首页> 外文OA文献 >Design and optimization of Artificial Neural Networks for the modelling of superconducting magnets operation in tokamak fusion reactors
【2h】

Design and optimization of Artificial Neural Networks for the modelling of superconducting magnets operation in tokamak fusion reactors

机译:托卡马克聚变反应堆中超导磁体运行建模的人工神经网络设计与优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In superconducting tokamaks, the cryoplant provides the helium needed to cool different clients, among which by far the most important one is the superconducting magnet system. The evaluation of the transient heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses, induced by the intrinsically pulsed plasma scenarios characteristic of today's tokamaks, is crucial for both suitable sizing and stable operation of the cryoplant. For that evaluation, accurate but expensive system-level models, as implemented in e.g. the validated state-of-the-art 4C code, were developed in the past, including both the magnets and the respective external cryogenic cooling circuits. Here we show how these models can be successfully substituted with cheaper ones, where the magnets are described by suitably trained Artificial Neural Networks (ANNs) for the evaluation of the heat load to the cryoplant. First, two simplified thermal-hydraulic models for an ITER Toroidal Field (TF) magnet and for the ITER Central Solenoid (CS) are developed, based on ANNs, and a detailed analysis of the chosen networks' topology and parameters is presented and discussed. The ANNs are then inserted into the 4C model of the ITER TF and CS cooling circuits, which also includes active controls to achieve a smoothing of the variation of the heat load to the cryoplant. The training of the ANNs is achieved using the results of full 4C simulations (including detailed models of the magnets) for conventional sigmoid-like waveforms of the drivers and the predictive capabilities of the ANN-based models in the case of actual ITER operating scenarios are demonstrated by comparison with the results of full 4C runs, both with and without active smoothing, in terms of both accuracy and computational time. Exploiting the low computational effort requested by the ANN-based models, a demonstrative optimization study has been finally carried out, with the aim of choosing among different smoothing strategies for the standard ITER plasma operation
机译:在超导托卡马克中,低温装置可提供冷却不同客户所需的氦气,其中最重要的是超导磁体系统。评估从磁体到低温设备的瞬态热负荷是低温设备设计的基础,而评估合适的策略来平滑当今托卡马克人固有的等离子体等离子体场景引起的热负载脉冲,对于两者而言都至关重要。冷冻机的尺寸合理且运行稳定。为了进行该评估,需要精确而昂贵的系统级模型,例如在过去开发了经过验证的最新4C代码,包括磁体和相应的外部低温冷却回路。在这里,我们展示了如何用便宜的模型成功替代这些模型,其中磁铁由经过适当培训的人工神经网络(ANN)描述,用于评估冷冻设备的热负荷。首先,基于人工神经网络,为ITER环形磁场(TF)磁体和ITER中央螺线管(CS)开发了两个简化的热工水力模型,并对所选网络的拓扑和参数进行了详细分析。然后将人工神经网络插入ITER TF和CS冷却回路的4C模型,该模型还包括主动控制,以使冷冻设备的热负荷变化平稳。 ANN的训练是通过对驱动器的传统S型波形进行完整的4C模拟(包括磁体的详细模型)的结果来实现的,并且在实际ITER操作场景下,基于ANN的模型的预测能力是通过与完整4C运行的结果进行比较来证明,无论有无有源平滑,无论是在准确性还是在计算时间上。利用基于ANN的模型所需的低计算量,最终进行了示范性优化研究,目的是为标准ITER等离子操作选择不同的平滑策略

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号